Wastewater Nitrogen & Phosphorus Removal without Plant Upgrades: Optimizing the Operation of Existing Facilities

GRANT WEAVER, PE & WASTEWATER OPERATOR

US Environmental Protection Agency – Region 8
December 10, 2013

Traditional Approach: Facility Planning

your design solution { web video print app } As an analogy, let's assume ...

I have a five year old car that squeaks and sputters. I'm looking for advice.

As an analogy, let's assume ...

I have a five year old car that squeaks and sputters. I'm looking for advice.

Alternative Approach: Use Existing Equipment Differently to Create Habitats to Support N&P Removal

Montana DES

Two Day Classroom Seminar (2012)

	t-N Before (mg/L)	t-N After (mg/L)
Chinook	25	13
Conrad	26	5
Manhattan	11	7

Facilities Not Designed for Nitrogen Removal

	<u>t-N Before</u>	<u>t-N After</u>
Montague, MA	11	5
Upton, MA	20	6
Palmer, MA*	20	8
Plainfield Village, CT	20	8
Plainfield North, CT	15	8
Farmington, CT	12	8
Amherst, MA	25	10

Facilities Operated Differently from O&M Manual

	<u>t-N Before</u>	<u>t-N After</u>
Suffield, CT	6	2
Windsor Locks, CT	7	5
Colchester-East Hampton, C	T 11	8

Phosphorus Removal without Facility Upgrades

	<u>t-P Before</u>	<u>t-P After</u>
Keene, NH	3.0	0.2
East Haddam, CT	3.5	0.4
Montague, MA	5.5	0.6
Suffield, CT	3.0	0.7
Plainfield Village, CT	3.0	0.8

Nutrient Removal

Biological Nitrogen Removal: Soluble organic-N is converted to Nitrogen Gas

Oxygen Rich Habitat

Ammonia-Nitrogen (NH₄) converts to Nitrate-Nitrogen (NO₃)

Oxygen Poor Habitat

Nitrate-Nitrogen (NO₃) converts to Nitrogen Gas (N₂)

Biological Phosphorus Removal: Soluble ortho-P is removed as sludge (dead bacteria)

Zero Oxygen Habitat

Bacteria take in energy (VFAs) and temporarily expel P

Oxygen Rich Habitat

Bacteria use energy to "bulk up" on ortho-P

Biological N&P Removal Nitrogen

Secondary Clarifier FERMENT Return Sludge

Biological N&P Removal Phosphorus

Biological N&P Removal

Biological N&P Removal: SBR w/Fermenter

NextGen Treatment Requires NextGen Operations: More Wastewater Operator Attention is Required!

Knowledge

Nitrogen biochemistry Phosphorus biochemistry

Information (in-line instrumentation & SCADA)

Continuously monitor conditions Interpret data daily

Action

Daily adjustments
Preemptive changes
Reactive changes

Case Study: \$100 Million Savings @ 3 Communities

60% Nitrogen Reduction

80% Phosphorus Reduction

Existing equipment: No New Tanks

O&M cost SAVINGS

Fewer Chemicals

Less Electricity

Less Sludge

Carbon Footprint: REDUCED

Case Studies: \$100 million savings

Combined Population: 76,000

Total Design Capacity: 14.7 MGD

	total-N (mg/L)	total-P (mg/L)
Amherst, MA	25 to 10	
Keene, NH		3.0 to 0.2
Plainfield (CT) North	15 to 8	
Plainfield (CT) Village	20 to 8	3.0 to 0.8

Plainfield, Connecticut

Population: 15,000

Two Plants

North Design Flow: 1.5 MGD Village Design Flow: 0.6 MGD

No new effluent limits, but monetary advantage to reducing nitrogen

Plainfield, Connecticut North Plant

Design Flow: 1.0 MGD Actual: 0.4 MGD

Effluent total-N

Before Changes: 15 mg/L After Operational Changes: 8 mg/L

After Plant Renovation: 5 mg/L (anticipated)

Effluent total-P

Before Changes: 2.0 mg/L

After Operational Changes: 2.0 mg/L

After Plant Renovation: 1.0 mg/L (anticipated)

North Plant Plainfield, Connecticut

Case Study Plainfield, Connecticut Village Plant

Design Flow: 0.5 MGD Actual: 0.2 MGD

Effluent total-N

Before Changes: 20 mg/L

After Operational Changes: 8 mg/L

After Renovation (anticipated): 5 mg/L

Effluent total-P

Before Changes: 3 mg/L

After Operational Changes: 0.8 mg/L

After Renovation (anticipated): 0.5 mg/L

Plainfield Village

Plainfield Village Gravity Thickener as Post-Anoxic tank for bio-N removal

Plainfield Village Gravity Thickener as Fermenter for bio-P removal

Plainfield, Connecticut

New Facility Upgrade: \$5,000,000

Renovate both treatment plants

Original Facility Upgrade: \$45,000,000

Replace Village Plant with Pumping Station
Build all new plant at site of existing North Plant

Case Study Amherst, Massachusetts

Population: 38,000

Design Flow: 7.2 MGD

Actual: 5.0 MGD (school in session)

3.5 MGD (school break)

Effluent total-N

Before: 25 mg/L

After: 10 mg/L

With pH buffering: 6 mg/L (anticipated)

Effluent total-P

Before and After: 3 mg/L

Amherst, Massachusetts

New Nitrogen Limit: 546.5 pounds/day, approximately 13 mg/L

2008 BioWin modeling found facility "not capable of removing nitrogen."

Facility Upgrade cost estimate: \$61,000,000

Amherst, Massachusetts

town of amherst massachusetts

wastewater treatment facilities

Cost of Compliance: < \$100,000

Proposed Facility Upgrade: \$61,000,000

2008 BioWin modeling results:

... "there are no operational or minor modifications/retrofits that could be implemented at this facility to consistently achieve nitrogen removal.

The existing facility has half of the necessary volume at the current flows ..."

Case Study Keene, New Hampshire

Population: 23,000

Design Flow: 6.0 MGD Actual: 3.0 MGD

Effluent total-N

Before & After: 8 mg/L

Effluent total-P

Before Changes: 3.0 mg/L After Changes: 0.2 mg/L

Keene, New Hampshire

Keene, New Hampshire

Modified Plant Upgrade: \$4,000,000

Proposed Facility Upgrade: **\$12,000,000**

Case Studies

Improved Treatment	<u>Before (mg/L)</u>	After (mg/L)
Nitrogen Removal	15-25	6-10
Phosphorus Removal	3.0	0.2-0.8

O&M Costs

Amherst, MA \$30,000/yr Savings (sludge disposal)
Plainfield, CT Small Savings
Keene, NH \$50,000/yr Savings (chemical usage)

Findings

Wastewater treatment plants can remove Nitrogen &/or Phosphorus at fantastic savings: \$ Billions

Instrumentation and computer controls are cost-effective; but, rarely purchased:
Local funds (0&M budgets) are tight
Clean Water Funds not practical

Operator expertise required

0010371

Ideas for EPA to consider ...

Promote Optimization

Train & Empower Operators

Make Money Readily Available for \$500K Projects

Instrumentation and Computer Control
Installation
Remote interpretation and on-going Support

"Innovative and Alternative" Funding for Regional Optimization Effort(s):
State(s)
Watershed(s)

"Means Test" Process Changes before Capital Improvement Funding

Making clean water affordable

Thank You!

Grant We aver @the Water Planet Company. com222

Grant Weaver, Your Presenter

President

The Water Planet Company

Wastewater Operations & Maintenance

Wastewater Consulting

Licensing

Professional Engineer (CT and PA)

Wastewater Operator (CT, MA, NH, RI)

Education

Kansas State University: BS Biology

Oklahoma State University: MS Bio-Environmental Engineering

Massachusetts Institute of Technology: Post-Graduate Studies in

Environmental Toxicology

